Comment on `Exact solutions of the two-dimensional Burgers equation'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 335157
(http://iopscience.iop.org/0305-4470/33/28/401)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:28

Please note that terms and conditions apply.

COMMENT

Comment on 'Exact solutions of the two-dimensional Burgers equation'

Jarmo Hietarinta

Department of Physics, University of Turku, FIN-20014 Turku,Finland

Received 22 November 1999

Abstract

We demonstrate that an analysis in the paper by Sirendaoreji (1999 J. Phys. A: Math. Gen. $326897-900$) can be considerably simplified, and show that some of the derived expressions which were claimed to be solutions of the two-dimensional Burgers equation do not, in fact, satisfy that equation.

In [1] Sirendaoreji constructs solutions to the two-dimensional Burgers equation

$$
\begin{equation*}
\left(u_{t}+u u_{x}-u_{x x}\right)_{x}+u_{y y}=0 \tag{1.1}
\end{equation*}
$$

After starting with a fairly general ansatz the author quickly reduces it to

$$
\begin{equation*}
u(x, y, t)=-k\left[1+\tanh \frac{k x+R(y, t)-\ln P(y, t)}{2}\right]+B \tag{2.11}
\end{equation*}
$$

with the following equations for the unknown functions R and P :
$\left\{\begin{array}{l}k^{2} B P-k^{3} P-k P_{t}+k P R_{t}-2 P_{y} R_{y}+P R_{y}^{2}+P_{y y}-P R_{y y}=0 \\ k^{2} B P^{2}-k^{3} P^{2}-k P P_{t}+k P^{2} R_{t}+2 P_{y}^{2}-2 P P_{y} R_{y}+P^{2} R_{y}^{2}-P P_{y y}+P^{2} R_{y y}=0 .\end{array}\right.$
It is obvious from (2.11) of [1] that only the combination $R(y, t)-\ln P(y, t)$ counts. This becomes clear when one multiplies the first equation of (2.10) with P and subtracts it from the second; the resulting equation can be written as

$$
[R(y, t)-\ln P(y, t)]_{y y}=0
$$

with the solution

$$
R(y, t)=\ln P(y, t)+y a(t)+b(t)
$$

What remains from (2.10) of [1] is then

$$
a(t)^{2}+k y a(t)^{\prime}+k b(t)^{\prime}+(B-k) k^{2}=0
$$

and since a and b do not depend on y we find the solution

$$
\begin{aligned}
& a(t)=\alpha \\
& b(t)=t\left[-\alpha^{2} / k-(B-k) k\right]+\beta
\end{aligned}
$$

where α and β are the integration constants. The result is therefore nothing more than the standard travelling wave of the kink variety

$$
\begin{equation*}
u(x, y, t)=-k[1+\tanh ((k x+\alpha y+\omega t+\beta) / 2)]+B \tag{K}
\end{equation*}
$$

with the expected dispersion relation

$$
\begin{equation*}
(B-k) k^{2}+k \omega+\alpha^{2}=0 \tag{DR}
\end{equation*}
$$

The solution (2.13) of [1] is the solution (K), (DR) above, but solutions (2.14) and (2.,17) of [1] are just their special cases. On the other hand, the proposed results (2.15) and (2.19) are not solutions of the original equation: the given R, P pairs (with nonlinear y-dependence) in fact only satisfy the second equation of (2.10), but not the first.

Reference

[1] Sirendaoreji 1999 Exact solutions of the two-dimensional Burgers equation J. Phys. A.: Math. Gen. 32 6897-900

