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Abstract. We demonstrate that an analysis in the paper by Sirendaoreji (1999 J. Phys. A:
Math. Gen. 32 6897–900) can be considerably simplified, and show that some of the derived
expressions which were claimed to be solutions of the two-dimensional Burgers equation do not,
in fact, satisfy that equation.

In [1] Sirendaoreji constructs solutions to the two-dimensional Burgers equation

(ut + uux − uxx)x + uyy = 0. (1.1)

After starting with a fairly general ansatz the author quickly reduces it to

u(x, y, t) = −k

[
1 + tanh

kx + R(y, t) − ln P(y, t)

2

]
+ B (2.11)

with the following equations for the unknown functions R and P :{
k2BP − k3P − kPt + kPRt − 2PyRy + PR2

y + Pyy − PRyy = 0

k2BP 2 − k3P 2 − kPPt + kP 2Rt + 2P 2
y − 2PPyRy + P 2R2

y − PPyy + P 2Ryy = 0.
(2.10)

It is obvious from (2.11) of [1] that only the combination R(y, t)− ln P(y, t) counts. This
becomes clear when one multiplies the first equation of (2.10) with P and subtracts it from the
second; the resulting equation can be written as

[R(y, t) − ln P(y, t)]yy = 0

with the solution

R(y, t) = ln P(y, t) + ya(t) + b(t).

What remains from (2.10) of [1] is then

a(t)2 + kya(t)′ + kb(t)′ + (B − k)k2 = 0

and since a and b do not depend on y we find the solution

a(t) = α

b(t) = t[−α2/k − (B − k)k] + β

where α and β are the integration constants. The result is therefore nothing more than the
standard travelling wave of the kink variety

u(x, y, t) = −k [1 + tanh((kx + αy + ωt + β)/2)] + B (K)
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with the expected dispersion relation

(B − k)k2 + kω + α2 = 0. (DR)

The solution (2.13) of [1] is the solution (K), (DR) above, but solutions (2.14) and (2.,17)
of [1] are just their special cases. On the other hand, the proposed results (2.15) and (2.19) are
not solutions of the original equation: the given R, P pairs (with nonlinear y-dependence) in
fact only satisfy the second equation of (2.10), but not the first.
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